Skip to Main Content
  • Português 
  • English 
  • Linde Worldwide
  • The Linde Group
  • About Linde
  • Engineering

  • Welcome
  • About Linde Engineering
      • Management
      • Locations
      • Quality, Health, Safety & Environment (QHSE)
      • Collaborate.Innovate.Deliver.
  • Process Plants
      • Air separation plants
      • LNG and natural gas processing plants
      • Hydrogen and synthesis gas plants
      • Petrochemical plants
      • Adsorption and membrane plants
      • Cryogenic plants
      • CO₂ plants
      • Furnaces, fired heaters and incinerators
  • Plant Components
      • Plate-fin heat exchangers (PFHEs)
      • Packaged units / coldboxes
      • Cryogenic columns
      • Coil-wound heat exchangers (CWHEs)
      • Cryogenic tanks
      • Air-heated vaporisers
      • Water bath vaporisers
      • Spiral-welded aluminium pipes
      • Helium storage tanks
      • UN portable tank (HELICS™)
      • Operational services
  • Services
      • Engineering
      • Procurement
      • Construction
      • Export and project financing
  • Innovations
      • Virtual reality redefines plant engineering
      • Innovative dry reforming process
      • FlexASU®
  • LINDE PLANTSERV™
      • Know-how and experience
      • Reliability
      • Efficiency and performance
  • News & Media
      • Press Services
      • Press Releases
      • Linde @ Social Media
      • Events
      • Publications
      • Linde Apps
      • Video Library
      • Media Contacts
  • Careers
      • Work @ Linde
      • People @ Linde
      • Roles @ Linde
      • Jobs @ Linde
      • 000 Students & Graduates @ Linde
      • Apply @ Linde
      • Job Blog
  • Contact
  • Page Type Examples
  •  
  • Language
    • Português
    • English
  • Linde Worldwide
  • The Linde Group
  • About Linde
  • Process Plants
  • Air separation plants
  • LNG and natural gas processing plants
  • Hydrogen and synthesis gas plants
    • Gas products
      • Hydrogen
      • Carbon monoxide
      • Synthesis gas
      • Ammonia
      • Methanol
    • Gas generation
    • Gas processing plants
  • Petrochemical plants
  • Adsorption and membrane plants
  • Cryogenic plants
  • CO₂ plants
  • Furnaces, fired heaters and incinerators
  • Process Plants
  • Hydrogen and synthesis gas plants
  • Gas products
  • Methanol
Ammonia Plant in Daqing, Heilonjiang Province, China.
LAC Concept
Customer: Daquing Oilfield Methanol Plant

Methanol Methanol (CH3OH, MeOH) is produced from synthesis gas, which in turn is produced by the steam reforming or partial oxidation of hydrocarbons or a combination of both processes (tandem reforming).

The synthesis gas is converted into methanol in a Linde isothermal reactor.

Methanol Synthesis in an Isothermal Reactor

Linde utilizes its own isothermal reactor for methanol synthesis. This is a fixed bed reactor cooled by coiled pipes. Its catalyst filling is cooled and maintained at optimum operating temperature through steam production in the pipe interiors.

The Linde isothermal reactor represents one of the most effective and successful developments of the recent past. The objective of the development was the creation of a reactor that offers at least the benefits of a pipe reactor, however avoids the head storage problems of a straight-pipe reactor. The catalyst conducts the reaction heat to a cooling pipe bundle embedded in the catalyst embankment, making it possible for the process to operate at optimum temperature. This results in higher performance, lower quantities of catalyst, fewer by-products as well as the efficient reclamation of reactor heat with lower reactor costs.

The design of the Linde isothermal reactor is based on the long familiar construction principle of the spirally wound heat exchanger, such as the ones used for decades as heat exchangers in cryogenic high-pressure applications and RECTISOL® washes. This type of heat exchanger is produced on our own shop floor and has acquired great technological and commercial significance in the recent past in applications for natural gas liquefaction units in base load plants. This is why there are reference applications and manufacturing facilities for a considerable spectrum of reactor sizes.

The Linde isothermal reactor has thus far been used in nineteen plants world-wide, among them eight methanol plants.

Low-Pressure Methanol Synthesis and Distillation

Linde has been a licensee of ICI (today: Johnson Matthey) for its low-pressure methanol synthesis and distillation processes since 1984. The ICI methanol technology is the market leader and, in combination with the isothermal reactor, represents an ideal system for methanol synthesis and distillation.

Gas-Heated Reformer

Some of the methanol plants built by Linde procure raw gas through integration with other synthesis gas plants. Because Linde also builds plants for CO production, our customers acquire from a single supplier the feedstocks of an acetic acid plant thanks to the simultaneous integration of methanol synthesis and CO production.

Large-scale methanol plants, however, call for an independent synthesis gas production based on the requirements of a methanol plant. This solves the machine drive concept while simultaneously producing an ideally composed synthesis gas. A "green field" methanol plant of this kind ideally has access to two-stage synthesis gas production, the second stage of which uses oxygen for the production of synthesis gas. Only the use of oxygen can generate an advantageous H2/CO ratio, which limits the loss of purge gas.

In principle, either a steam reformer or a gas-heated reformer is suitable for the first step of synthesis gas production. The combination of a secondary reformer with oxygen and a gas-heated reformer is called a Tandem reformer and provides very low energy consumption. In this case the machine drives are powered by electric motors and imported electricity.

Any questions?
  • Contact

    Contact us
Downloads
Hydrogen(PDF 3.0 MB)
    • LinkedIn
    • Twitter
    • Facebook
    • YouTube
    • Google Plus
    • Xing
    • Terms of Use
    • Data Protection
  • © The Linde Group 2019

To enhance your user experience and to deliver our online services, this website uses cookies for reasons of functionality, comfort and statistics. By continuing to browse the site, you are agreeing to our use of cookies.
You can find out more on our data protection information.
You must check the "I accept cookies from Linde Sites" box to accept.
More